Convergence Analysis for Splitting of the Abstract Differential Riccati Equation

نویسندگان

  • Eskil Hansen
  • Tony Stillfjord
چکیده

We consider a splitting-based approximation of the abstract differential Riccati equation in the setting of Hilbert–Schmidt operators. The Riccati equation arises in many different areas and is important within the field of optimal control. In this paper we conduct a temporal error analysis and prove that the splitting method converges with the same order as the implicit Euler scheme, under the same low regularity requirements on the initial values. For a subsequent spatial discretization, the abstract setting also yields uniform temporal error bounds with respect to the spatial discretization parameter. The spatial discretizations commonly lead to large-scale problems, where the use of structural properties of the solution is essential. We therefore conclude by proving that the splitting method preserves low-rank structure in the matrix-valued case. Numerical results demonstrate the validity of the convergence analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence analysis of spectral Tau method for fractional Riccati differential equations

‎In this paper‎, ‎a spectral Tau method for solving fractional Riccati‎ ‎differential equations is considered‎. ‎This technique describes‎ ‎converting of a given fractional Riccati differential equation to a‎ ‎system of nonlinear algebraic equations by using some simple‎ ‎matrices‎. ‎We use fractional derivatives in the Caputo form‎. ‎Convergence analysis of the proposed method is given an...

متن کامل

An exponential spline for solving the fractional riccati differential equation

In this Article, proposes an approximation for the solution of the Riccati equation based on the use of exponential spline functions. Then the exponential spline equations are obtained and the differential equation of the fractional Riccati is discretized. The effect of performing this mathematical operation is obtained from an algebraic system of equations. To illustrate the benefits of the me...

متن کامل

Convergence Analysis for Splitting of the Abstract Riccati Equation

We consider a splitting-based approximation of the abstract Riccati equation in the setting of Hilbert–Schmidt operators. The Riccati equation arises in many different areas and is important within the field of optimal control. While convergence of different methods for approximating the Riccati equation is discussed in several studies, none of them rigorously prove an order of convergence. In ...

متن کامل

Application of fractional-order Bernoulli functions for solving fractional Riccati differential equation

In this paper, a new numerical method for solving the fractional Riccati differential  equation is presented. The fractional derivatives are described in the Caputo sense. The method is based upon  fractional-order Bernoulli functions approximations. First, the  fractional-order Bernoulli functions and  their properties are  presented. Then, an operational matrix of fractional order integration...

متن کامل

A Solution of Riccati Nonlinear Differential Equation using Enhanced Homotopy Perturbation Method (EHPM)

Homotopy Perturbation Method is an effective method to find a solution of a nonlinear differential equation, subjected to a set of boundary condition. In this method a nonlinear and complex differential equation is transformed to series of linear and nonlinear and almost simpler differential equations. These set of equations are then solved secularly. Finally a linear combination of the solutio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2014